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Abstract

A new approach for the enforced motion analysis of large-scale vehicle structures with the large mass technique is

presented. A vehicle finite element model includes global and local structural damping to reduce the vibration level. In

order to avoid possible numerical inaccuracy of the large mass approach, the modal frequency problem is partitioned into

the low-frequency mode part and the flexible mode frequency mode part, in which the FRRA algorithm is employed for

the solution of the flexible mode part. A numerical example shows an outstanding performance compared to traditional

industry methods.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Vehicle structural systems are subjected to various load and boundary conditions. Boundary conditions are
classified as single-point constraints, multi-point constraints, and enforced motion. In particular, the enforced
motion is used when base motion is specified, in which the displacement, velocity, or acceleration at nodes is
specified for dynamic response analysis [1]. In vehicle dynamic response analysis, the enforced motion analysis
has been one of the essential tools for improving ride quality because there is a need to enforce the motion of
tires to simulate the vehicle travelling over a prescribed surface.

For the enforced motion analysis, large mass, large stiffness, or Lagrange multiplier techniques have been
widely used [1,2] to solve the frequency response problem. If the added stiffness or mass is sufficiently stiff or
massive, the reaction force from the actual structure will not significantly affect the input motions. The large
mass method has more of an advantage than the other method since it is easy to estimate a good value for the
large mass, which is approximately 1062107 times the mass of the entire structure. However, the conventional
approach, which factorizes the coefficient matrix, may lead to inaccurate results [1,2] because the finite element
(FE) matrices introduce ill-conditioning due to significantly larger masses compared to the mass of the
structure. Even worse, as the size of the FE model increases, the factorization cost of the coefficient matrix at
each excitation frequency increases significantly.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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This paper presents an efficient numerical method for the dynamic response analysis of large-scale vehicle
structures subjected to enforced motion, in which the large mass approach is used to describe the enforced
motion. A vehicle structure considers local and global structural dampings in order to reduce the vibration
level. In addition, this paper utilizes the fast frequency response analysis (FFRA) algorithm for solving the
enforced motion problem in order to improve the performance significantly compared to the conventional
approach in commercial FE softwares.

2. Enforced motion analysis using the FFRA algorithm

Fig. 1 illustrates the large mass technique concept in the enforced motion analysis. The FE model of a
vehicle structure is connected to a point with a large mass instead of restraining at a ground point. The large
mass represents the base for which the motion is to be specified. If a very large mass M0 is attached to a degree
of freedom and the load PðtÞ is applied to the same degree of freedom, a desired or enforced acceleration €uðtÞ
can be produced since PðtÞ ¼M0 €uðtÞ.

In the FE method that includes both a vehicle structure and large masses, the direct frequency response
analysis (FRA) with local and global structural damping [3,4] can be represented as

�o2M þ ð1þ igÞK þ iKs

� �
X ðoÞ ¼ PðoÞ, (1)

where o is the excitation frequency, PðoÞ 2 Cn�nf is the excitations force, and X ðoÞ 2 Cn�nf is the frequency
response matrix, where nf is the number of load cases. K , and Ks 2 Rn�n are the FE stiffness, and local
structural damping matrix, respectively. n Represents the number of FE degrees of freedom. The M includes
both the FE structural mass and the large masses M0. The scalar g is the global structural damping coefficient.
Structural damping encompasses energy dissipation related to the internal structure of a vibrating body. It is
especially intended to account for energy loss due to the hysteresis of elastic materials experiencing cyclic stress
[4,5]. In this paper, we consider only frequency-independent damping material.

Today, since the size of industry FE models tends to increase for more accurate analysis, solving these very
large FE systems of equations at many frequencies o is still expensive. Instead, modal frequency response
analysis has been used [6]. With the generalized eigenvalue problem KF ¼MFL, in which F 2 Rn�m is the
eigenvector matrix, L 2 Rm�m is the diagonal eigenvalue matrix and m is the number of modes obtained up to
cutoff frequency ðm� nÞ, the modal frequency response problem is represented as

�o2I þ ð1þ igÞLþ iK̄s

� �
ZðoÞ ¼ F ðoÞ, (2)
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Fig. 1. Large mass approach ðM0 �MÞ for the enforced motion analysis.
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where FTMF ¼ I , FTKF ¼ L 2 Rm�m, and X ðoÞ ¼ FZðoÞ, F ðoÞ ¼ FTPðoÞ 2 Cm�nf . When the local
structural damping matrix Ks does not exist, solving the modal frequency response problem is very
inexpensive because the coefficient matrix becomes diagonal. However, when the local structural damping
matrix is non-zero, the modal local structural damping matrix K̄s ¼ FTKsF 2 Rm�m becomes a fully
populated matrix, which resulting in expensive computational cost.

The accuracy of the enforced motion analysis with the large mass approach increases as the mass M0

increases compared to the mass of the structure [1,2]. However, due to significantly large mass M0 compared
to the mass of the structure, large-scale factors may produce numerical problems in the factorization of the
coefficient matrix of Eq. (2). Therefore, in order to avoid the numerical inaccuracy or difficulty of
factorization related to large numbers, the frequency response problem is partitioned into the low-frequency

mode part l, corresponding to modes with very low natural frequencies due to large masses, and the flexible

mode part f , corresponding to the rest of the global modes, in which l � f .
Then, the modal frequency response problem (2) can be represented in the form

(3)

where AðoÞ represents ð�o2I þ ð1þ igÞLþ iK̄sÞ. The subscripts ll, ff , lf and fl represent the low-frequency
mode part, the remaining or flexible mode part, and the interaction part between those two parts, respectively.
Zl and Zf are the low-frequency mode and the flexible mode parts of the structure solution, respectively. Fl is
the force matrix in the low-frequency mode part and F f is the force matrix in the flexible mode part. The
submatrices All ;Alf ;Afl and Aff can be defined as follows:

All ¼ �o2I ll þ ð1þ igÞLll þ iK̄s;ll ;

Alf ¼ iK̄s;lf ; Afl ¼ AT
lf

Aff ¼ �o2I ff þ ð1þ igÞLff þ iK̄s;ff :

(4)

Eq. (3) is solved by representing the upper part and the lower part separately. The lower part of Eq. (3) is
expressed as

Zf ¼ A�1ff ðFf � AflZlÞ. (5)

Substituting Eq. (5) into the upper part of Eq. (3) yields

ðAll � Alf A�1ff AflÞZl ¼ F l � Alf A�1ff F f . (6)

Note that both Eqs. (5) and (6) require the inverse of the submatrix Aff , which is the biggest sub-matrix.

Therefore, it is essential to obtain A�1ff F f and A�1ff Afl efficiently.

Recently, Kim [4] developed the FFRA algorithm, which is an efficient modal frequency response problem
reformulation to obtain high performance while producing exactly the same solution as the direct method that
factorizes the coefficient matrix. In this point, the FFRA algorithm can be utilized to obtain A�1ff F f and A�1ff Afl

efficiently from the following linear system of equations:

Aff V 1;V 2½ � ¼ Ff ;Afl

� �
. (7)

First, Eq. (7) can be rewritten as

½�o2I ff þ C� V 1;V2½ � ¼ Ff ;Afl

� �
(8)

by introducing the complex symmetric and frequency-independent matrix C as [3,4]

C ¼ ð1þ igÞLff þ iK̄s;ff . (9)

Then, the complex symmetric matrix eigenvalue problem for C is solved as

CFC ¼ FCLC such that FCFT
C ¼ FT

CFC ¼ I , (10)
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where LC is the complex eigenvalue matrix and FC is the corresponding complex eigenvector matrix.
Substituting ½V1;V2� ¼ FC ½W 1;W 2� into Eq. (8) and premultiplying by FT

C gives

FT
C ½�o

2I ff þ C�FC ½W 1;W 2� ¼ FT
C Ff ;Afl

� �
. (11)

Finally, Eq. (11) results in

�o2I ff þ LC

� �
W 1;W 2½ � ¼ FT

C Ff ;Afl

� �
. (12)

where LC ¼ FT
CCFC from Eq. (10). ½W 1;W 2� is obtained inexpensively because of the diagonal coefficient

matrix in Eq. (12).
Then ½V 1;V2� is obtained from the back-transformation as ½V 1;V2� ¼ FC ½W 1;W 2�. From the solution

V1;V 2½ � ¼ A�1ff F f ;A
�1
ff Afl

h i
, Eq. (6) can be rewritten as follows.

ðAll � Alf V 2ÞZl ¼ F l � Alf V 1. (13)

Since the dimension l of the coefficient matrix is very small compared to the flexible mode part f , it is
inexpensive to solve the linear system (13) with the direct method.

After the low-frequency mode part solution Zl is obtained, the flexible mode part Zf is obtained from
Eq. (5) in the form

Zf ¼ V1 � V 2Zl . (14)

The final modal solution for the entire structure becomes

ZðoÞ ¼
Zl

Zf

" #
. (15)

Note that, in the conventional approach, the modal frequency response problem in Eq. (2) needs to be
solved with Oðm3Þ operations to factorize the coefficient matrix. Even worse, one needs to solve Eq. (2) for
many excitation frequencies, hundreds of excitation frequencies. However, in the new approach of this paper,
the complex symmetric matrix eigenvalue problem in Eq. (10) needs to be solved only one time with Oðf 3

Þ

operations for the flexible mode part, because C is frequency independent. Then, at each excitation frequency
o, Eq. (12), which has a diagonal coefficient matrix, Eq. (13), which has a very small dimension l, and Eq. (14),
which requires only one matrix–matrix multiplication, need to be solved. This significantly reduces
computational costs compared to the method that requires Oðm3Þ operations at each frequency.

3. Accuracy and performance

As a numerical example, an industry automobile FE model is selected to evaluate the performance and
accuracy of the new approach developed in this paper. An HP rx5670 with 900MHz Itanium II processor is
used to evaluate the performance of algorithm.

A full size vehicle FE model subjected to enforced motion has a total of 36 large masses that are attached to
the four wheels. This FE model has 2,091,329 FE degrees of freedom to describe the structural system. The
frequency range of interest is from 50 to 250Hz with a 0.5Hz increment, so that the global cutoff frequency is
set to 400Hz. The number of global modes m obtained from the generalized eigenvalue problem KF ¼MFL
is 3091. In the FE model, the global structural damping g and local structural damping Ks are included.
Table 1 summarizes the analysis information for the FE model.

Table 2 represents the timing profile of the main steps in the algorithm for the enforced motion analysis of
the FE model. Since this model has several large masses, the coefficient matrix of the modal frequency
response problem is partitioned into the low-frequency mode part and the flexible mode part. The size of
the low-frequency mode part is 36 and the size of the flexible mode part is 3055, in order to avoid the
numerical difficulty of factorization due to large masses. Modes below 1Hz are considered to be the low-
frequency mode part.

In step (1), in order to obtain V1 and V2 of Eq. (7), the complex symmetric matrix eigenvalue problem for
the flexible mode part C is solved, which takes 39% of the analysis time. To solve the complex symmetric
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Table 1

FE model analysis information

Degrees of freedom 2,091,329 dof

Damping Global structural damping g
Structural damping Ks

Large masses 36

Excitation frequency range 50–250Hz with 0.5Hz increment

Global cutoff frequency 400Hz

Number of load cases 3

Number of global modes 3,091

Table 2

Timing profile [hh:mm:ss] of the enforced motion analysis for the FE model

Step Operation FFRA Direct method

complex symmetric matrix eigenvalue problem

(1) CFC ¼ FCL 2:51 –

for each excitation frequency o
fori ¼ 1,nfreq

(2.1) Aff V1;V2½ � ¼ F f ;Afl

� �
3:08 1:43:02

(2.1.1) P ¼ FT
C Ff ;Afl

� �
(0:21)

(2.1.2) FT
CAff FC W 1;W 2½ � ¼ P (2:26)

(2.1.3) ½V1;V2� ¼ FC ½W 1;W 2� (0:21)

(2.2) ðAll � Alf V 2ÞZl ¼ F l � Alf V 1 0:06 0:06

(2.3) Zf ¼ V 1 �V 2Zl 0:11 0:11

end

Total 7:16 1:43:19
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Fig. 2. The magnitude of velocity of the structural system subjected to the enforced motion.
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matrix eigenvalue problem efficiently, complex symmetric Householder method [4] is implemented with Level
3 BLAS (matrix–matrix multiplication) operations [7].

Once V1 and V2 are obtained in step (2.1) of the FFRA algorithm, the linear system for the low-frequency
mode part is solved in step (2.2). Since the number of low-frequency modes, 36, is much smaller than the
number of flexible modes of the structure, it is very inexpensive to solve this linear system. Then, the flexible
mode part solution Zf is computed in step (2.3), which requires only matrix multiplication.

To evaluate the performance of the new approach in this paper, step (2.1) is solved with the direct method,
ZSYSV in LAPACK [9] that factorize the coefficient matrix at each frequency, instead of using the FFRA
algorithm. Table 2 shows the elapsed time spent for step (2.1) with the direct method for 401 excitation
frequencies, from which 50 to 250Hz with a 0.5Hz increment. The new approach reduces the time spent in the
frequency response analysis by more than 93% compared to the traditional industry method.

The magnitude of the dynamic response in velocity subjected to the enforced motion is illustrated in Fig. 2.
For this prescribed enforced motion condition, this structural system has high peaks between 50 and 100Hz
range, so designers need to modify the design to reduce the peak in this range. In this figure, the results from
the direct method and the new approach of this paper are the same. This numerical model does not suffer from
numerical problems in the direct method problems.

4. Conclusion

An efficient numerical method for the dynamics response analysis of large-scale vehicle structures subjected
to the enforced motion is developed, in which local and global structural damping are considered. The large
mass approach is employed to describe the enforced motion, but has possible numerical inaccuracy due to
large-scale factors in the factorization of the coefficient matrix. In order to avoid the numerical inaccuracy of
factorization related to large numbers, to improve performance, the frequency response problem is partitioned
into the low-frequency mode part and the flexible mode part. The FFRA algorithm is employed for the
solution of the flexible mode part. With the FFRA algorithm, the new approach provides an outstanding
performance as well as a high degree of accuracy compared to the traditional industry method, which requires
coefficient matrix factorization at each frequency.
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